DOWNLOAD
drugs and affected lncRNAs according to drug names (|log2 FC| ≤ 2): Drug2Fold-db.txt
drugs and affected lncRNAs according to drug names (|log2 FC| ≤ 1.5): Drug1.5Fold-db.txt
drugs and affected lncRNAs according to instance ID (|log2 FC| ≤ 2): Instance2Fold-db.txt
drugs and affected lncRNAs according to instance ID (|log2 FC| ≤ 1.5): Instance1.5Fold-db.txt
lncRNAs in LNCmap: lncRNAs_LNCmap.xls
drugs in LNCmap: drugs_LNCmap.xls
drug induce-lncRNA sets: drug-induced_lncRNASets.xls
How to use LSEA and ORA in local machine:
LSEA and ORA algorithms were based on R script. LSEA algorithm was implemented by using core code of R-GSEA script, and ORA algorithm was implemented using a hypergeometric test in R script. Before you implement your enrichment analysis, please download dataset.zip file and decompress it in your local machine. The available resource of LSEA and ORA can be downloaded as follows:
R-GSEA: http://software.broadinstitute.org/gsea/downloads.jsp
ORA script: ORA
Dataset used in enrichment analysis: dataset
LncRNAProfile example for LSEA: LncRNAProfile.gct
LncRNAProfileLabel example for LSEA: LncRNAProfileLabel.cls
lncRNA list example fro ORA: lncRNA_list.txt
###########Example code for LSEA##############
source("GSEA.1.0.R", verbose=T, max.deparse.length=9999) GSEA( input.ds = "LncRNAProfile.gct", # Input lncRNA expression Affy dataset file in GCT format input.cls = "LncRNAProfileLabel.cls", # Input class vector (phenotype) file in CLS format gs.db = "./dataset/drugName2fold.gmt", # lncRNA set database in GMT format output.directory = "./result/LNCMap/", # Directory where to store output and results (default: "") doc.string = "LNCMap", non.interactive.run = F, reshuffling.type = "sample.labels", nperm = 1000, weighted.score.type = 1, nom.p.val.threshold = -1, fwer.p.val.threshold = -1, fdr.q.val.threshold = 0.25, topgs = 20, adjust.FDR.q.val = F, gs.size.threshold.min = 15, gs.size.threshold.max = 500, reverse.sign = F, preproc.type = 0, random.seed = 760435, perm.type = 0, fraction = 1.0, replace = F, save.intermediate.results = F, OLD.GSEA = F, use.fast.enrichment.routine = T ) GSEA.Analyze.Sets( directory = "./result/LNCMap/", # Directory where to store output and results (default: "") topgs = 20, height = 16, width = 16 )
###########Example code for ORA##############
source("ORA.R") pth<-0.01 ##p-value threshold lncRNA_list<-read.delim ("lncRNA_list.txt",header=T) allLncRNAs<-read.delim("./dataset/gencodeV19Lnc.txt",header=T) hypers<-intersect(lncRNA_list[,1],allLncRNAs[,1]) dataset<- read.delim("./dataset/drugName2fold.txt", header=F, stringsAsFactors = F, sep=";") names(hypers) <- c("hyper") names(dataset) <- c("DrugName", "ATCCode", "lncRNAs") result<-LNCmapHyperAnalysis(data.frame(hypers),dataset,lncNum,pth)
Depends: R (≥ 2.15.2)